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Abstract

Real quantities can undergo such a wide variety of dynamics that the mean is often a meaningless reference point for
measuring variability. Despite their widespread application, techniques like the Coefficient of Variation are not truly
proportional and exhibit pathological properties. The non-parametric measure Proportional Variability (PV) [1] resolves
these issues and provides a robust way to summarize and compare variation in quantities exhibiting diverse dynamical
behaviour. Instead of being based on deviation from an average value, variation is simply quantified by comparing the
numbers to each other, requiring no assumptions about central tendency or underlying statistical distributions. While PV
has been introduced before and has already been applied in various contexts to population dynamics, here we present a
deeper analysis of this new measure, derive analytical expressions for the PV of several general distributions and present
new comparisons with the Coefficient of Variation, demonstrating cases in which PV is the more favorable measure. We
show that PV provides an easily interpretable approach for measuring and comparing variation that can be generally
applied throughout the sciences, from contexts ranging from stock market stability to climate variation.
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Introduction

Understanding the variability of a quantity is a fundamental

concept. The concept is generally considered intuitive, and

techniques for measuring variability are rarely given a second

thought, despite well established pathological issues [2–4].

Variation is typically based on calculating the average deviation

from the mean. This of course assumes that the mean is a

meaningful starting point for measuring variation. Given the

central limit theorem, this may be a reasonable assumption in

terms of statistical sampling; however, in terms of dynamics, real

quantities rarely fluctuate about a central point and can exhibit a

diverse spectrum of dynamics ranging from simple oscillation to

chaos and noise [5]. There is nothing normal (Gaussian) about

these dynamics and the mean can therefore be a misleading

reference point for measuring variation. A common ground for

measuring and comparing overall variation among quantities

undergoing different dynamics requires a framework that is not

secondarily based on a measure of central tendency.

There has been extensive confusion in several disciplines about

the appropriate way to measure variation [2–4,6,7]. Given the

standard deviation is related to the mean [8], the most commonly

used and advocated technique for measuring variation on a

proportional scale is the Coefficient of Variation (CV), computed

as the standard deviation divided by the mean. Despite its

widespread application, it has many pathological properties that

can lead to inappropriate interpretation of results. In particular, it

is not a truly proportional measure of variability, as it is not

bounded by an upper value of 1. In contexts like population

ecology, rare events are known to severely bias the CV, whereas a

robust measure of variation should not rely on subjective decisions

about what is rare and common nor involve inappropriately

weighting or excluding data [9]. In the context of population

dynamics, Heath [1] developed a simple solution to this issue:

simply compare the numbers to each other rather than to an

average. Using numerical simulations, it was shown that this

technique is not biased by rare events or non-Gaussian dynamics,

allows more accurate estimation of long term variability from short

term data sets, and allows robust summarization and comparison

of variability (or inversely, stability) among quantities undergoing

very different dynamics. The present research uses mathematical

proofs and an analytical approach to demonstrate desirable

properties of Proportional Variability (PV), resolving important

standing issues and providing a general replacement for the

Coefficient of Variation. Variability is one of the most fundamen-

tal concepts in the sciences, and is particularly important for

understanding contemporary issues including economic and

environmental change. PV provides an intuitive and robust

common ground for measuring and comparing variation on a

proportional scale, and a new paradigm for concepts of variability.

Methods

Proportional Variability (PV) is based on a ratio comparison of

all numbers. For a given data set of n non-negative points zi§0,
there will be C~n(n{1)=2 unique pairwise combinations of

(zi,zj), for which we calculate the relative difference D(zi,zj). PV is

therefore defined as:
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Unlike CV, the domain of PV is on a truly proportional scale

½0,1�. Like the CV, this provides a summary of variation where the

chronology of the data is irrelevant, and PV effectively considers

variation at all scales or time lags. However, by ordering the data

in a sequence of increasing magnitude, we can demonstrate some

very desirable characteristics of a truly proportional measure of

variability. Of course, if the data is constant, PV=0, and the series

is a simple horizontal line. If there is variability, the ordered series

will be increasing, the steepness depending on the extent of

variability. If the ordered series is linearly increasing, i.e., as an

arithmetic sequence, and in the case the starting element of this

sequence is zero, it is simple to prove that PV will equal exactly 0.5

independent of sample size n:
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If variability as measured by PV is greater than 0.5, the values in

the ordered series are increasing non-linearly. At the extreme, if

variation increases exponentially with time as an ordered

geometric series (zi~z0q
i with the common ratio qw1), PV will

approach a value of 1 as the sample size goes to infinity:
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for qw1, and a similar proof is true for qv1. This demonstrates

very desirable and intuitive attributes of a proportional measure of

variability. In contrast, CV has a domain that is theoretically

½0,?), rather inappropriate for a measure interpreted as being

proportional.

If a system is normal (Gaussian), the Coefficient of Variation

(and many other metrics based upon a measure of central

tendency), is particularly excellent at providing useful first and

second order summaries of the data (e.g. mean and standard

deviation, respectively). By considering continuous probability

distributions, we will demonstrate that PV behaves quantitatively

similar to the CV under these conditions. This is desirable, but as

we describe, the assumptions required for using CV will never be

fully met by any systems of real (positive) quantities. We

demonstrate that unlike CV, PV can be calculated for continuous

distributions with an undefined mean. We conclude by considering

bimodal distributions (e.g. simple oscillations), and show that PV is

a cure for the pathological properties of the CV when otherwise

stable populations exhibit rare events.

Results

For a continuous probability distribution p(z) of a non-negative

real variable z§0, PV can be computed in the following way:

PV~1{2

ð?
0

ð?
zi

zi

zj
p(zi)p(zj)dzjdzi: ð4Þ

In this section, we will analytically solve Eq. 4 for different

continuous probability distributions, but first, we will consider the

Gaussian or ’normal’ distribution, where we solve Eq. 4

numerically. While rarely considered in practice, one issue with

assuming data conform to a normal continuous distribution is the

implication that some, albeit perhaps a small amount of numbers,

can be negative. This is obviously an incorrect assumption for real

positive quantities such as population abundances or temperature

(the latter being analyzed in Kelvins). PV does not require this false

assumption and is only appropriate for positive quantities.

Therefore, to avoid contributions from negative values, we center

the mean of the normal distributions at least two standard

deviations in the positive domain, set the distribution equal to zero

at negative values and renormalize the remaining part according-

ly.

PV behaves quantitatively similar to CV across a wide range of

distributions and qualitatively similar for very fat distributions

(Figure 1, i.e., CV is larger for fat distributions as extreme values in

the tails of the distribution are given substantially more weight due

to deviations from the mean being squared in calculating the

standard deviation). This indicates PV is a useful replacement for

the CV under normal conditions. Because PV is independent of

the mean, it also allows statistical analysis of variation vs. the

mean, an inappropriate analysis for the CV.

As another test, we compute CV and PV for a uniform

distribution centered at m with width w (mww=2). Equation 4

leads to:

PVuniform~
1

w2
m{

w

2

� �2
ln

mzw=2

m{w=2

� �
{mwzw2

� �
and

CVuniform~
w

2
ffiffiffi
3

p
m
:

ð5Þ

These expressions for PV and CV are very close to each other

for w%m, though they differ close to w~2m with PVuniform~0:5

and CVuniform~1=
ffiffiffi
3

p
&0:577. PV is therefore quantitatively

similar to CV under normal conditions, providing an appropriate

replacement. In a further example, we calculate CV and PV for

the exponential distribution

p(z)~l exp ({lz): ð6Þ

After some algebra, it turns out that both CVexp~1 and

PVexp~2(1{ ln (2))&0:6137, are independent of the decay

constant l in this case.

PV has the advantage compared to CV and other mean-based

metrics, that it can be computed even when a mean is not defined.

The Pareto distribution (e.g. [10]) is useful for describing many

observable phenomenon such as the skewed distribution of wealth.

It is defined as:

Proportional Variability (PV)
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with the two parameters scale zminw0 and shape kw0. For the

Pareto distribution, a mean is only defined if the shape parameter

k is larger than one, and a second moment (including CV) is only

defined for kw2. PV is a first order measure of variability and can

be computed using Equation 4 for all k to PVPareto~1=(kz1),
independent of the scale parameter zmin.

The mean is also not defined for the heavy-tailed Cauchy-

Lorentz (CL) distribution (e.g. [10])

p(z)~
1

p

s

s2z(z{t)2
ð8Þ

which is described by a scale s and location parameter t. We

restrict our analysis to positive CL distributions, considering the

positive half of the distribution with a location parameter t~0
(and an according normalization factor of two). The CV cannot be

calculated for the CL distribution. Interestingly, for this special

case (t~0), the definite integrals in Eq. 4 can be solved

analytically, leading to the result PVCL~2=3, which is indepen-

dent of the scale parameter s. This indicates that contributions

near z~0 and large z perfectly balance each other out as the scale

parameter changes for this distribution. Heath [1] demonstrated

numerically that PV is much more appropriate when rare events

occur, which is the case for heavy-tailed Cauchy-Lorentz

distributions. This is because by comparing each number to every

other number, rare events are evaluated in direct relation to their

frequency (i.e., how rare they are). PV therefore solves the

problem of rare events and allows calculating variability without

inappropriate decisions to include outliers or not.

Bimodal distributions offer another intuitive way to compare

measures of variability for rare events or other mixed distributions

such as those produced by simple oscillatory dynamics. As a clear

demonstration, we analyse discrete distributions with NA and

NB~n{NA counts at only two magnitudes, zA and zB~zAzf.
In this case, with g~NB=(NAzNB)

PVbimodal~
f

zAzf

2ng(1{g)

n{1
and

CVbimodal~
f

zAzfg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(1{g)

p
:

ð9Þ

The first notable observation here is that when exchanging NA

and NB (i.e., replacing g with 1{g while keeping sample size n
constant), PV behaves symmetrically, maintaining the same value,

whereas CV changes in magnitude. The difference between PV

and CV (and indeed other central tendency based measures)

becomes very obvious when considering large deviations f
between the two magnitudes (zA and zB) and large differences

between the two counts (i.e., g close to zero or to one). The latter is
the regime of rare events. In Figure 2, we chose a particularly

demonstrative example, a perfectly stable population with all

elements at the same common value and only a single rare event.

Increasing the sample size n while maintaining a single rare event

(NB~1) means that the proportion of rare events will be

decreasing monotonically due to increasing counts of the common

value. As seen in Figure 2, PV decreases monotonically with

sample size as expected and is appropriate, however CV actually

increases initially for low sample sizes before beginning a slow

decrease. This characteristic of CV is particularly pathological,

and an inappropriate description of variability for this quantity

which is otherwise always stable.

A well-known measure of distribution that behaves similarly to

PV for the case of a bimodal distribution is the relative mean

difference (RMD) or related Gini coefficient (defined as half of

RMD – e.g. [11]). For the remaining distributions discussed in the

present report, expressions for RMD can be found elsewhere (e.g.

[12]). RMD (and therefore Gini coefficient) is based on the mean,

which is why RMD can not be computed for mean-less

distributions like Cauchy-Lorentz or Pareto with kƒ1.

Discussion

This treatment demonstrates the wide applicability and

robustness of Proportional Variability (PV). While CV is only

appropriate for normal distributions, PV behaves the same as CV

under these conditions, but also functions as desired for all other

possible forms of dynamics. This makes PV particularly appealing

Figure 1. Proportional Variability (PV) and the Coefficient of Variation (CV) correspond closely and quantitatively over a large
range of parameters for the Gaussian distribution. Before truncating negative numbers and renormalizing, (A) standard deviation = 5, and (B)
stable mean= 100 with increasing standard deviation (as per C, s~5,10,20,30,40,50). Both CV and PV have been obtained by numerically solving the
defining integral equations.
doi:10.1371/journal.pone.0084074.g001

Proportional Variability (PV)
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for summarizing and comparing variability in data that can

undergo a wide variety of dynamics, such as in non-linear

economic, physical and biological systems [5]. Heath [1] also

numerically demonstrated that PV behaves the same as the

spectral exponent (a useful gold standard) when used to evaluate

more time more variation (reddened spectrum), whereas CV

inappropriately suggests spectral reddening in stationary time

series. Furthermore, PV allows substantially more accurate

estimates of known long term variability from short term sampling,

for a variety of distributions [1]. Recent work supports the finding

that PV is robust to rare events, showing lower standard error in

PV compared to other metrics using jackknife estimates [13]. PV

has now been applied to quantify variability in populations of a

variety of species [14,15], in oceanography [16], characterizing

frequency distributions [17], and quantifying variability in

backscatter measurements from acoustic surveys [18]. The present

treatment provides an analytical basis for the further development

of PV, and many additional characteristics and applications are

likely to be discovered as it is implemented in various contexts by

researchers with different expertise. Overall, our results indicate a

strong case for the general adoption of PV as a standard measure

of variability: it is a truly proportional first order measure of

variability, avoids issues associated with standard techniques, and

provides a robust common ground to summarize and compare

variability in systems undergoing a wide variety of dynamic

behaviour. We advocate PV as a useful common ground for

evaluating and comparing stability (1/PV) and variation through-

out the sciences. It is our intention to encourage critical thinking

about philosophies of variability, and to raise skepticism and

caution in applying and interpreting other approaches such as the

Coefficient of Variation. Redefining our paradigm of variability

will be particularly important for addressing contemporary issues

of economic and climatic variability, and for establishing

relationships between variability in physical, biological and

socioeconomic quantities.
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