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The dynamics of resource patches and species that exploit such
patches are of interest to ecologists, conservation biologists, mode-
lers, and mathematicians. Here we consider how social interactions
can create unique, evolving patterns in space and time. Whereas
simple prey taxis (with consumable prey) promotes spatial uniform
distributions, here we show that taxis in producer–scrounger
groups can lead to pattern formation. We consider two types of
foragers: those that search directly (“producers”) and those that
exploit other foragers to find food (“scroungers” or exploiters).
We show that such groups can sustain fluctuating spatiotemporal
patterns, akin to “waves of pursuit.” Investigating the relative
benefits to the individuals, we observed conditions under which
either strategy leads to enhanced success, defined as net food con-
sumption. Foragers that search for food directly have an advantage
when food patches are localized. Those that seek aggregations of
group mates do better when their ability to track group mates
exceeds the foragers’ food-sensing acuity. When behavioral
switching or reproductive success of the strategies is included, the
relative abundance of foragers and exploiters is dynamic over time,
in contrast with classic models that predict stable frequencies. Our
work shows the importance of considering two-way interaction—
i.e., how food distribution both influences and is influenced by
social foraging and aggregation of predators.

pattern formation ∣ foraging strategies ∣ ecological patchiness ∣
chemotaxis ∣ spatial ecology

In this paper, we study the dynamics of social interactions to
explore the consequences for spatiotemporal population struc-

ture and dynamics. We show that interactions among individuals
are key for pattern formation and self-organization when foragers
either follow gradients of food or socialize with those that do. Our
aim is to demonstrate that social interactions among foragers
could have particularly important implications for spatial models
of forager-resource dynamics. A comprehensive understanding
of the spatial dynamics of social foraging needs to consider the
two-way dynamic interaction between forager aggregation and
resource patchiness, a problem that remains poorly understood
(1, 2).

A secondary theme is the discovery of another pattern-forming
mechanism. Nature abounds with patterns that the human eye is
adept at picking out. Patterns occur in chemical, physical, and
biological systems on many scales, from distribution of proteins
in a cell, and tissue morphogenesis, to patchy distribution of spe-
cies in ecology (3–5, 6). There is great interest in finding both
universal mechanisms for such patterns (e.g., the balance of re-
pulsion–attraction forces, local activation and long-range inhibi-
tion, or motion in an external field; ref. 7), as well as specific
examples that have rich pattern-forming features (8).

Patterns formed by organisms, and the way they shape their
environment, is a rich area with physical (phase transitions), en-
gineering (robotics), sociological (e.g., human traffic patterns),
and ecological implications (5, 9–11). Social foraging in mixed-
species groups and the emergent patterns of distributions have
been studied in ecology (e.g., ref. 12). Rules of individual beha-
vior in socially cohesive foraging and/or migrating groups have

been explored recently in empirical and theoretical studies
(13, 14).

In studying social foraging, our goal was to use a spatially
explicit analytical framework. There is great interest in extending
analytical and empirical studies to understanding the spatiotem-
poral dynamics of social aggregation, although tools for doing
so are as yet emerging. Both individual-based models tracking
single organisms (14) and density-based theories using partial dif-
ferential equations (PDEs) (8, 17) contribute to such technology.
The Keller–Segel (KS) model (18) provides a great avenue for
exploration that already has a history to build on. This model is
classical, based on a continuum approximation, and depicts a
mechanism for spatial aggregation. Although explored in vast
literature, KS has yet to be applied to the situation of dual social
behavior here described, but see the individual-based model for
gradient climbers and their highly social followers (14). Further,
how organisms shape and are in turn affected by the spatial dis-
tribution of their resources is still an emerging area of research,
addressed in this paper.

In group foraging studies, resource distribution, patch size and
structure, and distance between foragers were shown to influence
the “finders’ share” (food obtained by producers vs. scroungers)
(1, 15, 16), which motivated us to ask which strategy confers
an advantage under various conditions. To do so, we ask how lim-
ited resource distribution, patch size, and movement/search para-
meters contribute to relative success, quantified by a ratio of net
food consumed by foragers vs. exploiters. Recent spatially explicit
simulations to explore this question were based on simulations of
agent-based producer–scrounger models (1). Such studies suggest
that social interactions should increase with decreasing patch
encounter rate. These recent findings emphasize the need for
spatially explicit approaches in social foraging theory.

We conclude by investigating how switching between strategies
(within a generation) affects the relative abundance of each
behavioral type. We also consider a similar question on the time-
scale of many generations, when success of each strategy deter-
mines reproductive fitness.

Taxis Models
To understand spatial aggregation patterns, modelers often for-
mulate simple models that can be investigated analytically or
computationally. Some models track single individuals, positing
rules of interaction (1, 9) and others formulate equations to
describe densities of populations. Most such models are PDEs
(17) or (if nonlocal) integro-PDEs (20).
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Typical taxis equations for the motion of a population pðx; tÞ
toward a concentration of chemical or food cðx; tÞ have the form

∂p
∂t

¼ Dp∇2p − ∇ · ½χpp∇c�; [1a]

∂c
∂t

¼ Dc∇2cþ hðc; pÞ: [1b]

The first (Laplacian) terms describe random motion and/or che-
mical diffusion. Individuals also move by taxis up gradients of
c with characteristic taxis parameter χp. In the KS model (18),
individuals are amoeba and the chemical is cAMP, secreted by
the cells and degraded at rate k. Hence the kinetic term is
hðc; pÞ ¼ hKSðc; pÞ ¼ μp − kc. The KS model [1] and its variants
have been thoroughly investigated in the mathematical and mod-
eling literature. It is well known that the uniform steady state
of such equations can be destabilized by small amplitude noise,
giving rise to patterns of aggregation (18). A recent generaliza-
tion to multiple species includes ref. 19.

Simple Foragers
Eq. 1 can be reinterpreted as prey taxis (PT) where foragers p
move following the food concentrations c. Both foragers and
their food prey also move randomly, with motility coefficients
Dp and Dc, respectively. To represent a renewable resource that
is consumed at rate λ̂ per capita, decays at rate m̂, and is replen-
ished at rate r̂, we typically chose the term hðc; pÞ ¼ hPTðc; pÞ ¼
−λ̂pc − m̂cþ r̂.

In 1D, with no immigration or emigration (no-flux boundary
conditions on a domain of lengthL), the total forager population,
(∫ L

0 pðx; tÞdx) is constant. The model then has a spatially uniform
steady state with a constant level of foragers and food every-
where.

In view of the rich mathematical theory for KS aggregation, it
might be tempting to conclude that such prey–taxis systems can
also aggregate, leading spontaneously to a patchy distribution of
resources. This simple expectation is actually false, as argued in a
comprehensive work in ref. 17. Intuitively, there is an important
difference in the sign patterns of hKS and hPT: In KS, the indivi-
duals reinforce the chemical by secreting it (positive feedback),
whereas in the prey–taxis, the consumption of prey depletes local
patches (negative feedback).

In the SI Appendix, we show that the uniform steady state of [1]
with h ¼ hPT is stable, so that any perturbation in the distribution
of food and foragers decays with time. Deviations from unifor-
mity get damped with time, and no instability (and hence no
pattern formation) can arise. In the words of Lee et al. (17),
“prey–taxis tends to transform heterogeneous environments into
homogeneous environments, which gives an opposite result to the
chemotaxis case,” implying that simple prey–taxis does not lead to
complex patch dynamics.

Foragers and Exploiters
We asked whether the presence of distinct species or behavioral
types would alter the absence of spatiotemporal dynamics in the
simple prey–taxis model. Consequently, we consider a mixed-
species group with foragers that search for food directly, and others
attracted to forager aggregations. Social foraging has been
observed in a wide variety of taxa (2). It can include interactions
among individuals of the same species, or information provided by
exploiting discoveries of other species, such as in mixed-species
foraging flocks (e.g., shearwater flocks that are attracted to kitti-
wake foragers in aquatic “catalyst-kleptoparasite” foraging flocks;
ref. 12). Here, for simplicity, we focus on two types, termed simply
“forager” and “exploiter,” and consider both the static case and the
case when individuals can switch between these strategies.

To model such a system, we extended and scaled the taxis
model to track the fractional densities of foragers pðx; tÞ and ex-

ploiters sðx; tÞ (equivalently, producers and scroungers). The full
(unscaled) equations are given in the SI Appendix. In their dimen-
sionless form, these are

∂p
∂t

¼ ∇2p − vp∇ · ½p∇c� þ hpðp; sÞ; [2a]

∂s
∂t

¼ ∇2s − vs∇ · ½s∇p� þ hsðp; sÞ; [2b]

∂c
∂t

¼ d∇2c − λðpþ sÞc − μcþ r: [2c]

Space has been scaled by the size of the domain (typical length,
L) over which interactions occur and time by the timescale of
random search over distance L. Dimensionless parameters vs, vp
are relative taxis parameters of foragers and exploiters,
d ¼ Dc∕Dp is relative mobility of the prey, λ its per-capita con-
sumption rate, and μ its decay rate. Food is replenished at rate r.
The terms hp and hs, initially set to zero, allow us to consider
switching between the two types. Details of the dimensionless
parameters are given in the SI Appendix.

Interactions in a Fixed Patch with Distinct Species
We first study, the case of two distinct types that cannot switch
behaviors so that hp ¼ hs ¼ 0 in Eq. 2. For simplicity, we deal
here with a 1D domain (scaled to unit length as above) with
sealed ends, depicted by no-flux boundary conditions. Then
the total population, ∫ 1

0pðx; tÞ þ sðx; tÞdx ¼ 1 is conserved, and
we can explore dynamics for various choices of the fraction of
foragers ϕp and exploiters ϕs ¼ 1 − ϕp. From the structure of
the model, it is clear that a spatially homogeneous steady state
can exist, with populations uniformly distributed, pðxÞ ¼ ϕp
and sðxÞ ¼ 1 − ϕp, and the resource at level cðxÞ ¼ r∕ðλþ μÞ.
However, as argued below, this is not the only solution, and
interesting dynamics can occur.

Forager-Exploiter Interactions Lead to Spatiotemporal
Patterns and Patchy Resource Distribution
Standard linear stability analysis (LSA) of Eq. 2 reveals that the
uniform steady state can be destabilized provided that

1

ð1 − ϕpÞ
�
8ðλþ μÞ2ðdþ 1Þ

vpϕpλr
þ 2ðdþ 1Þ

�
≲ vs: [3]

This condition can be interpreted as a threshold for the exploiter
taxis parameter vs. When exploiters are weakly attracted to for-
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Fig. 1. Given the exploiter and forager taxis values vs, vp, only some
intermediate fraction of foragers ϕ1 < ϕp < ϕ2 can accommodate spatial in-
stability [3]. Otherwise, ϕp < ϕ1 provides insufficient cues for exploiter aggre-
gation, and ϕp > ϕ2, is like prey–taxis and supports no instability.
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ager groups (low vs), instability is less likely, all else being equal. If
vs is large enough, inequality [3] implies that (i) increasing the
mobility (through d) or decay rate of prey (through μ or the pre-
dation rate λ) is stabilizing, whereas (ii) increasing the prey–taxis
coefficient (vp) is destabilizing. Finally, (iii) the fraction of fora-
gers (ϕp) also plays a role. We plot the left-hand side of [3] vs. ϕp
in Fig. 1. Satisfying the inequality restricts ϕs to an intermediate
range. For example, for vs ¼ 10 and vp ¼ 10, instability occurs
for 0.14 ≤ ϕp ≤ 0.64.

We find that instability and spatial patterning is accompanied
by temporal oscillations. (In the SI Appendix, we show that this
instability stems from a Hopf bifurcation.) Linear stability analy-
sis also predicts that, at some lower value of vs, a single mode
becomes unstable, whereas higher vs allows for a range of un-
stable modes.

To visualize the resulting spatiotemporal dynamics, we carried
out simulations of the system [2]. Fig. 2 shows the results for two
values of vs (Movies S1–S2). Starting from a nearly uniform
distribution of foragers, exploiters, and resource, we observed
growth of periodic waves. By t ¼ 9, these fluctuations settle into
regular cycles. For a smaller value of vs (Fig. 2, Upper), a single
“hot spot” (red) alternates between one and the other end of the
domain. We can understand this behavior by noting that local
aggregations of animals deplete the food, which takes time to
renew. Meanwhile, movement toward undepleted food resources
sets up growing fluctuations. It is these waves of pursuit that lead
to the observed periodic fluctuation in the densities of the
variables.

If the parameter vs is increased (Fig. 2, Lower), the frequency
of oscillation increases and a larger numbers of hot spots occur
(resulting from instability of higher modes) with concurrent de-
crease in amplitudes of p and c. In the limit of high vs, the system
reduces back to the simple forager-resource system that has no
spatial instability: This is the case in which the exploiters track
foragers so efficiently that the motion of the two groups is prac-
tically indistinguishable. In this limit, the pattern can no longer be
sustained, and only the spatially uniform state is stable.

So far, analysis and simulations were confined to 1D. We asked
what the model predicts in higher dimension. This question is of
interest because it is well-known that KS chemotactic equations

can develop singularities and “blowup” solutions in finite time in
2D and 3D (21). We repeated this computation in 2D. As shown
in the SI Appendix and Movies S3–S8, the oscillatory patterns of
aggregation are also evident in the 2D setting. In contrast to the
positive feedback in the KS model, here prey depletion serves as
a negative feedback, preventing sharp peaks/singularities (due to
aggregation) from occurring.

Advantages of the Strategies: Foraging Versus Exploiting
To compare the two strategies, we reasoned that at any
given time, an individual of a given type has an opportunity to
feed proportional to its per-capita contact with food—i.e.,
cðx; tÞpðx; tÞ∕ϕp or cðx; tÞsðx; tÞ∕ϕs. We defined FpðtÞ, FsðtÞ as
the cumulative per-capita food intake for foragers and exploiters,
respectively (obtained by integrating the contact rates over the
domain, up to time t; see SI Appendix for details). Then the ratio
BðtÞ ¼ Fs∕Fp can be used to compare the relative advantage of
the strategies. We also denote bðtÞ as the ratio of instantaneous
per-capita food intake—i.e., without integration over time. B ¼ 1
implies both strategies are equally successful, whereas B > 1 cor-
responds to an advantage for exploiters. We consider both static
and dynamic versions of this measure.

Relative Advantages for a Static Food Patch
We first considered a static spatially nonuniform food distribution
cðxÞ with analytically solvable steady-state forager/exploiter pro-
files pðxÞ, sðxÞ and time-independent relative-advantage B. We
chose a unimodal food distribution cðxÞ ¼ cosðπxÞ þ 1 to satisfy
no-flux boundary conditions for p and s. In Fig. 3, we numerically
generated the curve of neutral advantage B ¼ 1 in the vp-vs plane
for various values of the forager fraction ϕp (see SI Appendix).
Exploiters do best when (vp; vs) is above the curve vs. foragers
below the curve. At a fixed forager acuity vp, exploiters with vs
above some threshold have greater advantage. Foragers with
low vp are weakly attracted to food, so their density forms shallow
gradients; then only exploiters with high acuity would detect such
slight forager density gradients. For larger vp, the foragers
concentrate at food sources, forming sharper density gradients,
so the threshold vs value is lower. Larger ϕp shifts theB ¼ 1 curve
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Fig. 2. Oscillatory spatial patterns in prey, forager, and exploiter densities for two values of exploiter taxis parameter vs. Horizontal axis is space; vertical axis is
time. Exploiter taxis parameter: (A) vs ¼ 10 and (B) vs ¼ 20. Other parameter values were vp ¼ 10, μ ¼ 0.05, λ ¼ 8.0, r ¼ 8.05, and d ¼ 0.1.
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lower, so exploiters have the advantage (B > 1) for a wider range
of vs.

Relative Advantage for a Nonrenewable Resource
Next, we investigated relative advantage when food is depleted
by consumption. Setting r ¼ 0, μ ¼ 0 in [2c], we used Gaussian
initial food profiles centered at x ¼ 0.5, all with the same area
(∫ cðx; 0Þdx), but varying standard deviation, σ. The “width” σ re-
presents a typical food patch “size.” About the populations, we
assumed an initial uniform density of each type, with proportions
ϕp; ϕs ¼ 1 − ϕp. We then asked how the relative success of the
strategies varies with respect to key model parameters such as
taxis rates vs; vp, relative prevalence of the two types, and patch
size.

All else being equal, exploiters do better per capita when for-
agers are abundant, as in the static case. Hence B is an increasing
function of ϕp (Fig. 4). Patch width affects the relative success.
For wide food patches with shallow gradients (e.g., when
σ ¼ 0.4), both strategies are roughly the same (B ≈ 1), regardless
of the relative abundance of exploiters and foragers. For nar-
rower patches with sharper gradients (σ ¼ 0.1; 0.05), we find that
B < 1, and foragers have a greater advantage over the whole
range 0 ≤ ϕp ≤ 1.

We also explored how the foragers’ ability to detect resource
gradients affects the relative success of the strategies. Exploiters
do poorly when their taxis parameter vs is low relative to foragers’
taxis parameter, vp, because foragers can utilize and deplete the
food before the arrival of exploiters (see SI Appendix, Fig. S1).

In comparison to the static case, we found that, when resources
are nonrenewable, foragers have the advantage for a wide range
of parameter values (B ≤ 1 in Fig. 4 and SI Appendix, Fig. S1).
This advantage stems from the fact that foragers are able to
locate, consume, and deplete resources rapidly, before exploiters
arrive. We then asked how two simple variations of the model
might affect our conclusions.

1. We considered an energetic cost to primary foraging (e.g.,
finding or subduing prey) that exploiters avoid paying. Then
the relative advantage becomes B ¼ Fs∕ðFp − costÞ. For suf-
ficiently high cost, exploiters gain the advantage, B > 1, as
expected (see SI Appendix, Fig. S2).

2. We also considered a mixed strategy, when exploiters also
search for resources on their own (but with some reduced
attention). To do so, we included a prey–taxis term in Eq. 2b
of the form −ðαvpÞ∇ · ½s∇c�, where α < 1. In the SI Appendix,
Fig. S3, we show that this variation allows for cases where
B > 1 as well. Other variants (not here considered) that affect
relative advantages could include more aggressive exploiters
or differences in food consumption rates.

Finally, we asked whether and how the relative advantage var-
ies over time for the full system as in Fig. 2. Results shown in
Fig. 5 indicate that relative advantage fluctuates over the cyclic
waves of pursuit. If exploiters taxis exceeds foragers’ taxis ability,
we find phases with b > 1, signifying times where exploiters tem-
porarily do better than foragers.

Switching Between the Strategies
Thus far, populations of types p and s were fixed (hp ¼ hs ¼ 0 in
Eq. 2). However, both short-term plasticity (learning to switch
strategy) and long-term dynamics (reproductive fitness) could
lead to population changes. Understanding the implications of
switching has been a key object of study in the social foraging
literature (1, 22). Here we investigate both switching and adapta-
tion in a spatial context, an important aspect, given that dynamic
resource distributions might affect the relative benefits to exploi-
ters and foragers dynamically (and distinctly) over time.

To consider dynamic behavioral switching, we assumed that
hp ¼ −hs ¼ αðbÞs − βðbÞp with switching rates

s → p : αðbÞ ¼ k∕ð1þ bÞ; p → s : βðbÞ ¼ kb∕ð1þ bÞ;
[4]

with k a maximal switching rate. Here the relative advantage b
can be measured in terms of local, global, and finite sensing
ranges, as detailed in the SI Appendix. Larger b favors p → s
switching. For b ¼ 1 (strategies equally successful), α ¼ β ¼ k∕2,
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Fig. 3. Neutral curve (B ¼ 1) for three values of ϕp. Above (below) the curve
exploiters (foragers) have the advantage. [Figure credit, Marysa Lague.]
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the uniform steady state is ϕs ¼ ϕp. Simulation results are shown
in Fig. 6. For parameter values in Fig. 2, switching leads to hardly
perceptible oscillations of strategies close to p ≈ s ≈ 0.5 (Fig. 6,
Upper). Other parameter values, however, accentuate the cycles
(Fig. 6, Lower; spatial patterns shown in SI Appendix, Fig. S7, and
Movie S9). Such results reinforce the idea that spatial interac-
tions can lead to behavioral transitions as well as dynamic fora-
ger-exploiter distributions. In contrast to a classic result where
social interactions led to a fixed frequency of forager and exploi-
ter (22), we observed temporal variations in the frequencies.

Further exploring the full spatiotemporal model, we found that
switching can both promote or suppress instability, by shifting the
critical vs value at which oscillatory pattern emerges. Switching at
constant rates, for example, yields new spatiotemporal patterns,
not seen otherwise, including standing wave patterns (see SI
Appendix, Fig. S6).

Next, we considered how reproductive fitness could affect the
population structure over several generations. To do so, we
omitted the short-term behavioral switching (hs ¼ hp ¼ 0), and
assumed, instead, the semelparous reproduction rule

sðT þ 1Þ ¼ FsðTÞ∕FðTÞ; pðT þ 1Þ ¼ FpðTÞ∕FðTÞ; [5]

for T the generation number, and F ¼ Fs þ Fp. Now [2] captures
within-generation dynamics, whereas [5] relates reproductive fit-
ness between generations to the relative success within a genera-

tion (while keeping population size fixed). Other cases with net
population growth can be simulated by alternating the model of
[2] (within a generation) with arbitrary fitness-based reproduc-
tion rule (see SI Appendix).

Rewritten, [5] yields ϕpðT þ 1Þ ¼ 1∕½1þ BðTÞ� (dotted curve
in Fig. 7). At each generation T, given ϕpðTÞ, we can compute
BðTÞ by integrating food consumed by each strategy over the for-
ager’s lifespan. One such curve, BðTÞ ¼ Fs∕Fp ¼ f ðϕpðTÞ; σÞ for
σ-sized food patch shown in Fig. 4 is copied on Fig. 7 (σ ¼ 0.05).
Together, such two rules link intergenerational values of ϕp and
B. A cobweb diagram based on this proof of principle illustrates
convergence of ϕp to a unique stable equilibrium over several
generations. Stable cycles are also possible, as discussed in the
SI Appendix, Fig. S10, provided the function f ðϕpðTÞ; σÞ is steep
enough. Thus, a variety of long-term dynamics are possible, and
provide future directions to explore, based on various assump-
tions about the food, the fitness measure, and dynamics between
and within generations.

Discussion
Social foraging models (2, 23) have addressed interactions in the
context of information sharing (24) and frequency dependent
dynamics (22, 25). One subset of such models examines so-called
producer–scrounger systems wherein one species (the scrounger)
exploits another (the producer). Most such investigations fail to
account for spatially explicit interactions (16, 22, 25), which have
been the focus of our paper.

Our results have two major thrusts. First, in a context of pat-
tern formation, we revisited the classic prey–taxis model and
showed that inclusion of exploiters leads to spontaneously emer-
gent patterns (absent in the original model). Such results apply to
a class of ecological models that fall under the rubric of produ-
cer–scrounger systems, although these have not been extensively
studied in the literature. (One notable exception is Beauchamp,
ref. 1, who indicated that spatial producer–scrounger systems
could be self-organizing.) Using analytic techniques such as LSA,
we found conditions on the parameters [3] for such patterns to
occur, finding persistent spatiotemporal oscillations stemming
from a Hopf bifurcation. These patterns form a stable attractor
of the dynamics in both 1D (Fig. 2, Movies S1–S2) and 2D
(Movies S3–S8). Heuristically, the primary foragers detect weak
resource gradients, congregate, and form detectable “crowd gra-
dients” to which exploiters respond. These interactions result in
an inherent delay: It takes time for forager gradients to form in
response to the prey distribution, and the exploiters can react
only once such gradients are noticeable. This lag leads to waves
of pursuit that arise spontaneously, with concomitant patchiness
in the resource distribution.

In ecology, a common basic assumption is that resources are
patchily distributed (26, 27) and that this influences competitive
advantage of various strategies (28). Recent studies suggest that
the amount of food obtained by producers vs. scroungers (the fin-
ders’ share), can depend strongly on patch structure and distances
between individuals (1, 15, 16). This idea motivated our second
major thrust, to explore the relative benefits of the two social
foraging strategies in the model. We quantified benefit in terms
of resources available to each strategy. In the case of fixed stra-
tegies and static resource distribution, we found (using conveni-
ent closed-form solutions of the system) how relative success
depends on the relative acuity and abundance of each species
(taxis parameters vs; vp and forager fraction ϕp). For a fixed for-
ager taxis parameter vp, exploiters do better as vs increases, or as
the fraction of foragers ϕp (and hence the steepness of their gra-
dient) increases. Exploiters also “win” at fixed intermediate
values of vs and small ϕp for large vp, again due to sharp gradients
of foragers they can detect. Both ideas relate to ways of crossing
the neutral curveB ¼ 1 shown in Fig. 3. In the case of exhaustible
food patches, the strategies are equal only when resources are
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Fig. 6. The fractions of foragers and exploiters over time in the case of strat-
egy switching. Parameter values as in Fig. 2, but with vp ¼ 10, vs ¼ 10, k ¼ 4

(Upper), and vp ¼ 1, vs ¼ 20, k ¼ 19 (Lower). Black curves indicate the frac-
tions of foragers and gray curves for the fractions of exploiters.

Fig. 7. When relative advantage of strategies affects the proportions of
foragers and exploiters in the next generation (dotted curve), the fraction
ϕp changes, here approaching a steady state. Solid curve: fðϕp; σÞ, σ ¼ 0.05
from Fig. 4.
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widely dispersed (large σ in a normally distributed resource
patch). Otherwise, foragers arrive first, get a larger share, and
have the advantage over exploiters.

We examined strategy switching based on the changing benefit
to forager vs. exploiter, which was in turn related to the dynamics
of prey patchiness. Both long- or short-ranged sensing of re-
sources was considered. Overall, we found that switching created
cycles of relative forager/exploiter abundance, whose frequency
and amplitude depends on sensing ranges in a nontrivial manner.
Whereas most classic approaches lead to a fixed frequency of pro-
ducers and scroungers (22), here we have shown it to be dynamic,
an important result. The interesting dynamics suggest avenues of
future mathematical exploration.

Our study has features in common with Guttal and Couzin
(14). They discuss a dichotomy of gradient-climbing “leaders”
and social individuals (“followers”) in an individual-based model
of migration. Here we were not concerned with long-range migra-
tion and only hinted at possible evolutionary implications. Our
use of PDEs led to analytic results. We also note the distinction
of our patterns and the patchiness arising from diffusive (Turing
based) instabilities in plankton, for example, ref. 4. The latter
depends on simple dispersion, coupled with specific kinds of
local predator–prey interactions.

We also tested extensions and variants of the basic model to
check robustness of conclusions to the assumptions. The variants
studied included (i) some weak additional attraction of exploiters
to food, and (ii) attraction of exploiters to both forager and
exploiter aggregates—i.e., taxis of the form −vs∇s · ∇ðsþ pÞ.
Overall, results are similar, and are omitted for brevity (but see
SI Appendix for additional detail).

Results of this model can be applied to many systems that have
inspired social foraging theory to date (23) as well as to systems

where predators can shape the patchiness of their prey, e.g.,
shorebirds (29), plankton (4), or arctic eider ducks diving under
sea ice for slow-moving benthic invertebrates (30). First, estima-
tion of the taxis parameter vp can be made using short-term
movement measurements of foragers toward artificially created
(known) resource gradients. Similar estimation of vs for the
exploiting species could be extracted under the same conditions.
Fig. 1 then suggests experiments to manipulate relative abun-
dance of the two species (from all foragers to all exploiters).
Our results predict that, if spatiotemporal patterns occur, they
should appear at some intermediate ratio of the two types, and
not at the two extremes. The condition for pattern [3] also sug-
gests that rapidly dispersing prey or highly mobile prey (large d)
are inconsistent with spatial patterns.

The limitations of continuum taxis models are that structure
and dynamics of food resources are restricted to smooth func-
tions. The model predicts dynamics of large groups for whom
densities are an adequate representation. At the same time, the
strength of the approach is that it provides an analytical baseline
for a spatial theory of frequency dependant foraging and aggre-
gation. Further, building on established chemotaxis aggregation
models, it adds a frequency-dependent dynamics that could pro-
vide general insights into pattern formation and self-organizing
systems.
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